1,448 research outputs found

    Amorphization of ZnAl2O4 spinel under heavy ion irradiation

    Get PDF
    ZnAl2O4 spinels have been irradiated with several ions (Ne, S, Kr and Xe) at the IRRSUD beam-line of the GANIL facility, in order to determine irradiation conditions (stopping power, fluence) for amorphisation. We observed by Transmission Electron Microscopy (TEM) that with Xe ions at 92 MeV, individual ion tracks are still crystalline, whereas an amorphisation starts below a fluence of 5.1012 cm-2 up to a total amorphisation between 1x1013 and 1x1014 cm-2. The coexistence of amorphous and crystalline domains in the same pristine grain is clearly visible in the TEM images. All the crystalline domains remain close to the same orientation as the original grain. According to TEM and X-Ray Diffraction (XRD) results, the stopping power threshold for amorphisation is between 9 and 12 keV.nm-1

    Soil weathering rates in 21 catchments of the Canadian Shield

    Get PDF
    Soil mineral weathering represents an essential source of nutrient base cation (Ca, Mg and K) for forest growth in addition to provide a buffering power against precipitation acidity for soils and surface waters. Weathering rates of base cations were obtained for 21 catchments located within the temperate and the boreal forest of the Canadian Shield with the geochemical model PROFILE. Weathering rates ranged from 0.58 to 4.46 kmol<sub>c</sub> ha<sup>−1</sup> yr<sup>−1</sup> and their spatial variation within the studied area was mostly in agreement with spatial variations in soil mineralogy. Weathering rates of Ca and Mg were significantly correlated (<i>r</i> = 0.80 and 0.64) with their respective lake concentrations. Weathering rates of K and Na did not correlate with lake concentrations of K and Na. The modeled weathering rates for each catchment were also compared with estimations of net catchment exportations. The result show that modeled weathering rates of Ca were not significantly different than the net catchment exportations while modeled weathering rates of Mg were higher by 51%. Larger differences were observed for K and Na weathering rates that were significantly different than net catchment exportations being 6.9 and 2.2 times higher than net exportations, respectively. The results for K were expected given its high reactivity with biotic compartments and suggest that most of the K produced by weathering reactions was retained within soil catchments and/or above ground biomass. This explanation does not apply to Na, however, which is a conservative element in forest ecosystems because of the insignificant needs of Na for soil microorganisms and above ground vegetations. It raises concern about the liability of the PROFILE model to provide reliable values of Na weathering rates. Overall, we concluded that the PROFILE model is powerful enough to reproduce spatial geographical gradients in weathering rates for relatively large areas as well as adequately predict absolute weathering rates values for the sum of base cations, Ca and Mg

    ‘Deliberate Preparation’ as an evidence-based focus for primary physical education

    Get PDF
    There is substantial scientific research suggesting the physical and psychological health benefits of a physically active lifestyle. Consequently, governments worldwide prioritize policies, finances, and resources in healthcare, education, and sports sectors to increase mass participation in physical activity. However, practices in physical activity promotion are often not underpinned by evidence-based standardization that is requisite in other domains of epidemiology. The aim of this article is to examine critically the available scientific research on promoting life-long physical activity participation and to propose an evidence-based model for implementation in school physical education. Reasons are discussed as to why programs that integrate physical, psychological, and behavioral skills have been long acknowledged in physical education and physical activity domains but remain lacking in empirical validation. Finally, future directions are suggested that are required to examine the application of this approach to practice in primary-level physical education

    Energy deposition by heavy ions: Additivity of kinetic and potential energy contributions in hillock formation on CaF2

    Full text link
    The formation of nano-hillocks on CaF2 crystal surfaces by individual ion impact has been studied using medium energy (3 and 5 MeV) highly charged ions (Xe19+ to Xe30+) as well as swift (kinetic energies between 12 and 58 MeV) heavy ions. For very slow highly charged ions the appearance of hillocks is known to be linked to a threshold in potential energy while for swift heavy ions a minimum electronic energy loss is necessary. With our results we bridge the gap between these two extreme cases and demonstrate, that with increasing energy deposition via electronic energy loss the potential energy threshold for hillock production can be substantially lowered. Surprisingly, both mechanisms of energy deposition in the target surface seem to contribute in an additive way, as demonstrated when plotting the results in a phase diagram. We show that the inelastic thermal spike model, originally developed to describe such material modifications for swift heavy ions, can be extended to case where kinetic and potential energies are deposited into the surface.Comment: 12 pages, 4 figure

    A phenomenological model of the superconducting state of the Bechgaard salts

    Full text link
    We present a group theoretical analysis of the superconducting state of the Bechgaard salts, e.g., (TMTSF)_2PF_6 or (TMTSF)_2ClO_6. We show that there are eight symmetry distinct superconducting states. Of these only the (fully gapped, even frequency, p-wave, triplet) 'polar state' is consistent with the full range of the experiments on the Bechgaard salts. The gap of the polar state is d(k) (psi_uk,0,0), where psi_uk may be any odd parity function that is translationally invariant.Comment: 4 pages, no figure

    Creation of multiple nanodots by single ions

    Full text link
    In the challenging search for tools that are able to modify surfaces on the nanometer scale, heavy ions with energies of several 10 MeV are becoming more and more attractive. In contrast to slow ions where nuclear stopping is important and the energy is dissipated into a large volume in the crystal, in the high energy regime the stopping is due to electronic excitations only. Because of the extremely local (< 1 nm) energy deposition with densities of up to 10E19 W/cm^2, nanoscaled hillocks can be created under normal incidence. Usually, each nanodot is due to the impact of a single ion and the dots are randomly distributed. We demonstrate that multiple periodically spaced dots separated by a few 10 nanometers can be created by a single ion if the sample is irradiated under grazing angles of incidence. By varying this angle the number of dots can be controlled.Comment: 12 pages, 6 figure

    Chromium Cycling in Redox‐Stratified Basins Challenges δ <sup>53</sup> Cr Paleoredox Proxy Applications

    Get PDF
    Chromium stable isotope composition (δ53Cr) is a promising tracer for redox conditions throughout Earth's history; however, the geochemical controls of δ53Cr have not been assessed in modern redox-stratified basins. We present new chromium (Cr) concentration and δ53Cr data in dissolved, sinking particulate, and sediment samples from the redox-stratified Lake Cadagno (Switzerland), a modern Proterozoic ocean analog. These data demonstrate isotope fractionation during incomplete (non-quantitative) reduction and removal of Cr above the chemocline, driving isotopically light Cr accumulation in euxinic deep waters. Sediment authigenic Cr is isotopically distinct from overlying waters but comparable to average continental crust. New and published data from other redox-stratified basins show analogous patterns. This challenges assumptions from δ53Cr paleoredox applications that quantitative Cr reduction and removal limits isotope fractionation. Instead, fractionation from non-quantitative Cr removal leads to sedimentary records offset from overlying waters and not reflecting high δ53Cr from oxidative continental weathering.ISSN:0094-8276ISSN:1944-800

    Possible Triplet Electron Pairing and an Anisotropic Spin Susceptibility in Organic Superconductors (TMTSF)_2 X

    Full text link
    We argue that (TMTSF)_2 PF_6 compound under pressure is likely a triplet superconductor with a vector order parameter d(k) \equiv (d_a(k) \neq 0, d_c(k) = ?, d_{b'}(k) = 0); |d_a(k)| > |d_c(k)|. It corresponds to an anisotropic spin susceptibility at T=0: \chi_{b'} = \chi_0, \chi_a \ll \chi_0, where \chi_0 is its value in a metallic phase. [The spin quantization axis, z, is parallel to a so-called b'-axis]. We show that the suggested order parameter explains why the upper critical field along the b'-axis exceeds all paramagnetic limiting fields, including that for a nonuniform superconducting state, whereas the upper critical field along the a-axis (a \perp b') is limited by the Pauli paramagnetic effects [I. J. Lee, M. J. Naughton, G. M. Danner and P. M. Chaikin, Phys. Rev. Lett. 78, 3555 (1997)]. The triplet order parameter is in agreement with the recent Knight shift measurements by I. J. Lee et al. as well as with the early results on a destruction of superconductivity by nonmagnetic impurities and on the absence of the Hebel-Slichter peak in the NMR relaxation rate.Comment: 4 pages, 1 eps figur
    corecore